This paper deals with an innovative optimization procedure for multi-physics analysis of electrical machines using Motor-CAD and optiSLang software. The approach is based on cutting edge sensitivity analysis, meta-modeling and optimization techniques that enable motor designers to leverage the design space and to find an optimum solution with respect to a given specification. A detailed optimization workflow is developed and applied to the design of an interior PM motor for a PHEV application. In particular, the electric motor is optimized to give maximum efficiency, minimum size and minimum cost, while achieving specific peak and continuous torque-speed characteristics.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    An Innovative Multi-Objective optimization Approach for the Multiphysics Design of Electrical Machines


    Beteiligte:
    Riviere, Nicolas (Autor:in) / Stokmaier, Markus (Autor:in) / Goss, James (Autor:in)


    Erscheinungsdatum :

    01.06.2020


    Format / Umfang :

    1109789 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Multiphysics Multi-Objective Optimization for Electric Motor NVH

    Cai, Haiwei / Zhang, Henry / Ricci, Joe et al. | SAE Technical Papers | 2019


    Multiphysics Multi-Objective Optimization for Electric Motor NVH

    Zhang, Henry / Ricci, Joe / Cai, Haiwei et al. | British Library Conference Proceedings | 2019


    Multiphysics simulation by design for electrical machines, power electronics and drives

    Roşu, Marius / Zhou, Ping / Lin, Dingsheng et al. | TIBKAT | 2018


    Multiphysics Topology Optimization of Aluminum and Copper Conductors for Automotive Electrical Machines

    Lizarribar, Borja / Prieto, Borja / Selema, Ahmed et al. | IEEE | 2024


    Innovative Vehicle Battery Pack Design Approach through Multiphysics Cells Simulation

    Messana, Alessandro / Pioli, Federico / Savi, Matteo et al. | British Library Conference Proceedings | 2022