Traditional and electric bicycles are becoming a growing mean of transportation in urban areas. In this study we present an algorithm which predicts the amount of energy a cyclist will deliver for a given route. The main idea of the algorithm is to predict the speed profile the cyclist is going to follow thanks to a bicycle model and a cyclist model combined with infrastructure constraints (e.g. traffic lights). The proposed algorithm is validated on different experimental trips.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Model based cyclist energy prediction


    Beteiligte:


    Erscheinungsdatum :

    01.10.2017


    Format / Umfang :

    312904 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    CONTEXT-BASED CYCLIST PATH PREDICTION USING RECURRENT NEURAL NETWORKS

    Pool, Ewoud A. I. / Kooij, Julian F. P. / Gavrila, Dariu M. | British Library Conference Proceedings | 2019


    Cyclist behaviour

    Shrimpton, D. E. / Bicycle Federation of Australia | British Library Conference Proceedings | 1992


    Context-based cyclist path prediction using Recurrent Neural Networks

    Pool, Ewoud A. I. / Kooij, Julian F. P. / Gavrila, Dariu M. | IEEE | 2019


    Using Road Topology to Improve Cyclist Path Prediction

    Pool, Ewoud Alexander Ignacz / Kooij, Julian Francisco Pieter / Gavrila, Dariu M. | British Library Conference Proceedings | 2017