Traffic sign recognition and detection are critical in expert systems for effectively recognizing traffic signs along the road, such as left hair pin bend, parking lot, minimum speed, no waiting speed. Today's India needs traffic recognition to alert people on various signs of traffic, prevent accidents, and protect drivers along the roadway. This case of the traffic sign recognition scenario is proceeding using various techniques like deep learning, machine learning, artificial intelligence, etc. This study discusses how deep learning techniques are used to predict traffic signs. The various algorithms used for implementation are CNN and Keras. The performance of implemented algorithms calculated on accuracy as well as the ability to identify and classify traffic signs used along the roadway in real time.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Traffic Signs Recognition using CNN and Keras


    Beteiligte:
    Nagesh, Puvvada (Autor:in) / Akhil, L. (Autor:in) / Rishi, K. (Autor:in) / Bhargav, T. Sai (Autor:in)


    Erscheinungsdatum :

    14.03.2023


    Format / Umfang :

    662198 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Traffic Signs Recognition

    Prakash, Kolla Bhanu | Wiley | 2022


    Traffic Signs Recognition using R-CNN

    Varshini, E. Amrutha / Likitha, J. / Aswini, N. et al. | IEEE | 2022


    Traffic Signs, Visibility and Recognition

    Sprenger, A. / Schneider, W. / Derkum, H. et al. | British Library Conference Proceedings | 1999



    Traffic signs recognition with deep learning

    Yasmina, Djebbara / Karima, Rebai / Ouahiba, Azouaoui | IEEE | 2018