Autonomous driving is one of the three major innovations in automotive industry. Autonomous vehicles promise to revolutionize human mobility and vehicle safety. This promise can't be realized without the ability to constantly make the right decisions even in the complex situations. This paper proposed a new decision-making system including a new way using the long short-term memory neural network to predict the states of the vehicles nearby in the short future using the history of which got from the cognitive ability. Based on the future states predicted by the neural network, this paper also proposed some statistics methods to give a classification criterion to judge a vehicle is dangerous, attentive or safe.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Vehicle driving behavior predicting and judging using LSTM and statistics methods


    Beteiligte:
    Zhang, Chao (Autor:in) / Che, Guangxu (Autor:in) / Gao, Bingzhao (Autor:in)


    Erscheinungsdatum :

    18.12.2020


    Format / Umfang :

    681881 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    / Apparatus and method for judging self-driving vehicle driving situation and determining behavior using a directional microphone

    AN KYOUNG HWAN / AN TAEG HYUN / CHOI DOO SEOP et al. | Europäisches Patentamt | 2019

    Freier Zugriff

    Vehicle driving behavior predicting device

    ONO SAYAKA | Europäisches Patentamt | 2016

    Freier Zugriff

    VEHICLE DRIVING BEHAVIOR PREDICTING DEVICE

    ONO SAYAKA | Europäisches Patentamt | 2015

    Freier Zugriff

    VEHICLE DRIVING BEHAVIOR PREDICTING DEVICE

    ONO SAYAKA | Europäisches Patentamt | 2018

    Freier Zugriff

    Method for judging converse running of automatic driving vehicle

    LIANG CHANGLE / SUN YAFU / WU QIONG | Europäisches Patentamt | 2021

    Freier Zugriff