With an increasing number of electric vehicles, the accurate forecasting of charging station occupation is crucial to enable reliable vehicle charging. This paper introduces a novel Deep Fusion of Dynamic and Static Information model (DFDS) to effectively forecast the charging station occupation. We exploit static information, such as the mean occupation concerning the time of day, to learn the specific charging station patterns. We supplement such static data with dynamic information reflecting the preceding charging station occupation and temporal information such as daytime and weekday. Our model efficiently fuses dynamic and static information to facilitate accurate forecasting. We evaluate the proposed model on a real-world dataset containing 593 charging stations in Germany, covering August 2020 to December 2020. Our experiments demonstrate that DFDS outperforms the baselines by 3.45 percent points in F1-score on average.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Deep Information Fusion for Electric Vehicle Charging Station Occupancy Forecasting


    Beteiligte:


    Erscheinungsdatum :

    19.09.2021


    Format / Umfang :

    253429 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Electric vehicle charging station occupancy prediction system

    HYEON SU YEONG | Europäisches Patentamt | 2024

    Freier Zugriff


    Vehicle Occupancy Forecasting

    C. Ulberg | NTIS | 1994


    Predicting Electric Vehicle Charging Stations Occupancy: A Federated Deep Learning Framework

    Douaidi, Lydia / Senouci, Sidi-Mohammed / El Korbi, Ines et al. | IEEE | 2023


    FORECASTING VEHICLE LOCATION OCCUPANCY

    AGARWAL SHAURYA / ALALAO AYMAN / HENDRICKSON TYLER et al. | Europäisches Patentamt | 2022

    Freier Zugriff