Uncertainty management has always been the key hurdle faced by diagnostics and prognostics algorithms. A Bayesian treatment of this problem provides an elegant and theoretically sound approach to the modern Condition-Based Maintenance (CBM)/Prognostic Health Management (PHM) paradigm. The application of the Bayesian techniques to regression and classification in the form of Relevance Vector Machine (RVM), and to state estimation as in Particle Filters (PF), provides a powerful tool to integrate the diagnosis and prognosis of battery health. The RVM, which is a Bayesian treatment of the Support Vector Machine (SVM), is used for model identification, while the PF framework uses the learnt model, statistical estimates of noise and anticipated operational conditions to provide estimates of remaining useful life (RUL) in the form of a probability density function (PDF). This type of prognostics generates a significant value addition to the management of any operation involving electrical systems.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Uncertainty Management for Diagnostics and Prognostics of Batteries using Bayesian Techniques


    Beteiligte:
    Saha, Bhaskar (Autor:in) / Goebel, Kai (Autor:in)


    Erscheinungsdatum :

    01.03.2008


    Format / Umfang :

    2909003 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    INTRUSIVE DIAGNOSTICS AND PROGNOSTICS USING CYCLE EFFICIENCY MANAGEMENT

    CHUNODKAR APURVA ARVIND / TULPULE PINAK JAYANT / HAAS MICHAEL et al. | Europäisches Patentamt | 2019

    Freier Zugriff


    Ground and On-Board Diagnostics and Prognostics for Aircraft Batteries

    Tsenter, B. Y. / James, J. E. | SAE Technical Papers | 2007


    Ground and On-Board Diagnostics and Prognostics for Aircraft Batteries

    James, J.E. / Tsenter, B.Y. / Society of Automotive Engineers | British Library Conference Proceedings | 2007


    Methodologies for uncertainty management in prognostics

    Liang, Tang / Kacprzynski, G.J. / Goebel, K. et al. | Tema Archiv | 2009