Environmental perception is one of the most difficult problems for off-road autonomous vehicles. Due to the variety and complexity of off-road environments, the information from any single sensor is not enough for safe and efficient vehicle navigation. Employing more sensors can greatly improve the vehicle's perceptive capability. This paper describes a multi-sensor data fusion system for off-road autonomous vehicles. The system acquires data from one camera, four laser range finders, one radar, and several ultrasonic sensors. A hierarchical structure is used to organize the sensors from feature level to high fusion level. Dempster-Shafer evidence theory is adopted to decide the classification of each grid in the fusion map. A weighted evidence combination rule is proposed and implemented to improve the decision results under high conflicting circumstance. The experimental results showed the validity of our method.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Environmental perception and multi-sensor data fusion for off-road autonomous vehicles


    Beteiligte:
    Zhiyu Xiang, (Autor:in) / Ozguner, U. (Autor:in)


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    285055 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Environmental Perception and Multi-Sensor Data Fusion for Off-Road Autonomous Vehicles

    Xiang, Z. / Ozguner, U. / IEEE | British Library Conference Proceedings | 2005


    MULTI SENSOR DATA FUSION FOR AUTONOMOUS VEHICLES

    Yenkanchi, Shashibushan | BASE | 2016

    Freier Zugriff

    Multi-Sensor Information Fusion for Determining Road Quality for Semi-Autonomous Vehicles

    Bhar, Trisanu / Venkataraman, Hrishikesh / Nidamanuri, Jaswanth | British Library Conference Proceedings | 2022


    Multi-Sensor Information Fusion for Determining Road Quality for Semi-Autonomous Vehicles

    Venkataraman, Hrishikesh / Nidamanuri, Jaswanth / Bhar, Trisanu | SAE Technical Papers | 2022


    Domain Adaptive Road Perception Network of Autonomous Vehicles

    Wang, Rui / Yang, Shichun / Chen, Yuyi et al. | IEEE | 2023