As image databases grow large in size, index structures for fast navigation become important. In particular, when the goal is to locate object queries in image databases under changes in pose, occlusions and spurious data, traditional index structures used in database become unsuitable. This paper presents a novel index structure called the interval hash tree, for locating multi-region object queries in image databases. The utility of the index structure is demonstrated for query localization in a large image database.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Interval hash tree: an efficient index structure for searching object queries in large image databases


    Beteiligte:
    Syeda-Mahmood, (Autor:in) / Raghaan, (Autor:in) / Megiddo, (Autor:in)


    Erscheinungsdatum :

    01.01.2000


    Format / Umfang :

    238461 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Interval Hash Tree: An Efficient Index Structure for Searching Object Queries in Large Image Databases

    Syeda-Mahmood, T. / Raghavan, P. / Megiddo, N. et al. | British Library Conference Proceedings | 2000


    Efficient processing of spatial queries in line segment databases

    Hoel, E.G. / Hanan Samet | Tema Archiv | 1991


    An Effective Directory Index Framework Taking Advantages of Hash Table and B^+-Tree

    Liu, X. / Wang, J. / Zhu, M. et al. | British Library Online Contents | 2013


    Efficient search scheme for very large image databases [3964-08]

    Pramanik, S. K. / Li, J. / Ruan, J. et al. | British Library Conference Proceedings | 2000


    Searching Across the International Space Station Databases

    Maluf, David A. / McDermott, William J. / Knight, Christopher D. et al. | IEEE | 2007