Vehicle theft remains a significant global concern, resulting in substantial financial losses and safety risks. The authors propose Vision Shield, a robust system utilizing deep learning methodologies to improve vehicle tracking and theft detection through automated surveillance. The system integrates computer vision techniques and real-time analytics to monitor and track vehicles across diverse locations effectively. Experimental results highlight the system’s ability to perform precise vehicle identification, maintain low false positive rates, and achieve high recall, thereby supporting timely interventions. The findings underscore the adaptability of Vision Shield to various environments, demonstrating its scalability for broader applications.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Graph Based ANPR in Presence of Occlusion


    Beteiligte:
    Khanna, Lavish (Autor:in) / Singh, Paramhans (Autor:in) / Thapa, Vishal Singh (Autor:in) / Gupta, Bhoomi (Autor:in) / Gupta, Sachin (Autor:in) / Bansal, Deepika (Autor:in)


    Erscheinungsdatum :

    09.04.2025


    Format / Umfang :

    528535 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Parking Assistance System using ANPR

    Shukla, Abhishek Kumar / Kumar, Yash / Nagpal, Shourya et al. | IEEE | 2023





    Street enforcement applications for mobile ANPR systems

    Percival, M. E. / Sedgwick, A. / Ellis, T. et al. | British Library Conference Proceedings | 2004