Gravity matching is the key technology of gravity aided inertial navigation. Traditional single point matching algorithm, SITAN algorithm, introduces large linearization error. The single point matching of UKF can reduce the linearization error and improve the matching accuracy effectively. However, under the situation of strong uncertainty of system process noise and the polluted measurement noise, UKF has poor performance. An adaptive robust Unscented Kalman Filter (ARUKF) based matching algorithm for gravity aided inertial navigation is proposed, which improves the robustness by introducing adaptive factor and robust function. Simulation results indicate that compared with algorithm based on standard UKF, the proposed algorithm can reduce the matching error more effectively, higher matching accuracy can be achieved ultimately.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    An Adaptive Robust Unscented Kalman Filter based Matching Algorithm for Underwater Gravity Aided Navigation


    Beteiligte:
    Deng, Zhihong (Autor:in) / Li, Cheng (Autor:in) / Yin, Lijian (Autor:in) / Wang, Bo (Autor:in) / Xiao, Xuan (Autor:in)


    Erscheinungsdatum :

    01.08.2018


    Format / Umfang :

    252103 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    An unscented Kalman filter based navigation algorithm for autonomous underwater vehicles

    Allotta, B. / CAITI, ANDREA / Chisci, L. et al. | BASE | 2016

    Freier Zugriff

    Integration Matching Algorithm on Gravity Aided Underwater Navigation

    Chen, Yun-Fang / Zhong, Ruo-Fei / Shi, Bo | Tema Archiv | 2011


    A hybrid adaptive unscented Kalman filter algorithm

    He, Jun / Chen, Yong / Zhang, Zhaoxia et al. | BASE | 2018

    Freier Zugriff

    Unscented Schmidt–Kalman Filter Algorithm

    Stauch, Jason / Jah, Moriba | AIAA | 2015


    Unscented Schmidt-Kalman Filter Algorithm

    Jason Stauch | Online Contents | 2015