We propose an architectural model for a responsive vision system based on techniques of reinforcement learning. It is capable of acquiring object representations based on the intended application. The system can be interpreted as an intelligent scanner that interacts with its environment in a perception-action cycle, choosing the camera parameters for the next view of an object depending on the information it has perceived so far. The main contribution of this paper consists in the presentation of this general architecture which can be used for a variety of applications in computer vision and computer graphics. In addition, the funcionality of the system is demonstrated with the example of learning a sparse, view-based object representation that allows for the reconstruction of non-acquired views. First results suggest the usability of the proposed system.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Vision System for Interactive Object Learning


    Beteiligte:
    Peters, G. (Autor:in)


    Erscheinungsdatum :

    01.01.2006


    Format / Umfang :

    382885 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Practical, Interactive, and Object-Oriented Machine Vision for Highway Crack Sealing

    Feng, X. / Mathurin, R. / Velinsky, S. A. | British Library Online Contents | 2005


    Interactive imitation learning of object movement skills

    Mühlig, M. | British Library Online Contents | 2012


    Vision-Language Tracking With CLIP and Interactive Prompt Learning

    Zhu, Hong / Lu, Qingyang / Xue, Lei et al. | IEEE | 2025


    Object detection vision system

    PETRANY PETER J / GUTTAG MATTHEW A / MALEY JACOB C et al. | Europäisches Patentamt | 2024

    Freier Zugriff