This paper addresses motion forecasting in multi-agent environments, pivotal for ensuring safety of autonomous vehicles. Traditional and recent data-driven marginal trajectory prediction methods struggle to properly learn non-linear agent-to-agent interactions. We present SSL-Interactions that proposes pretext tasks to enhance interaction modeling for trajectory prediction. We introduce four interaction-aware pretext tasks to encapsulate various aspects of agent interactions: range gap prediction, closest distance prediction, direction of movement prediction, and type of interaction prediction. We further propose an approach to curate interaction-heavy scenarios from datasets. This curated data has two advantages: it provides a stronger learning signal to the interaction model, and facilitates generation of pseudo-labels for interaction-centric pretext tasks. We also propose three new metrics specifically designed to evaluate predictions in interactive scenes. Our empirical evaluations indicate SSL-Interactions outperforms state-of-the-art motion forecasting methods quantitatively with up to 8% improvement, and qualitatively, for interaction-heavy scenarios.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    SSL-Interactions: Pretext Tasks for Interactive Trajectory Prediction


    Beteiligte:


    Erscheinungsdatum :

    02.06.2024


    Format / Umfang :

    2313906 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Quality circles - waymark or pretext

    Berlik,H.D. / Volkswagen,Hannove,DE | Kraftfahrwesen | 1987


    Adjacent vehicle interactive trajectory prediction method

    ZHAO WANZHONG / QU MENGYUE / ZHOU XIAOCHUAN et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    Learning Interactive Knowledge Graph for Trajectory Prediction

    Zhu, Chen / Bai, Jie / Fang, Jianwu et al. | British Library Conference Proceedings | 2022


    INTERACTIVE OBJECT TRAJECTORY PREDICTION SYSTEMS AND METHODS

    KOBLICK DARIN CHARLES | Europäisches Patentamt | 2024

    Freier Zugriff

    Learning Interactive Knowledge Graph for Trajectory Prediction

    Zhu, Chen / Bai, Jie / Fang, Jianwu et al. | Springer Verlag | 2022