We present our work on evaluating the usefulness of deep, convolutional neural networks (DNN) for classifying assembly or machine code as malicious or benign. Our results show that a DNN trained on a small dataset showed 95.1% accuracy in program classification. We also show a modified network can achieve 88% accuracy in classifying nine types of malware on a larger dataset, leaving room for future work to address variable length files.
Detecting Malicious Assembly with Deep Learning
01.07.2018
103816 byte
Aufsatz (Konferenz)
Elektronische Ressource
Englisch
SYSTEM AND PROCESSES FOR DETECTING MALICIOUS HARDWARE
Europäisches Patentamt | 2020
|System and processes for detecting malicious hardware
Europäisches Patentamt | 2021
|Method for detecting malicious traffic and Apparatus thereof
Europäisches Patentamt | 2022