Though license plate detection has been successfully applied in some commercial products, the detection of small and vague license plates in real applications is still an open problem. In this paper, we propose a novel hybrid cascade structure for fast detecting small and vague license plates in large and complex visual surveillance scenes. For rapid license plate candidate extraction, we propose two cascade detectors, including the Cascaded Color Space Transformation of Pixel detector and the Cascaded Contrast-Color Haar-like detector; these two cascade detectors can do coarse-to-fine detection in the front and in the middle of the hybrid cascade. In the end of the hybrid cascade, we propose a cascaded convolutional network structure (Cascaded ConvNet), including two detection-ConvNets and a calibration-ConvNet, which is designed to do fine detection. Through experiments with different evaluation data sets with many small and vague plates, we show that the proposed framework is able to rapidly detect license plates with different resolutions and different sizes in large and complex visual surveillance scenes.
Hybrid Cascade Structure for License Plate Detection in Large Visual Surveillance Scenes
IEEE Transactions on Intelligent Transportation Systems ; 20 , 6 ; 2122-2135
01.06.2019
3347884 byte
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
Vehicle License Plate Recognition In Complex Scenes
IEEE | 2020
|LICENSE PLATE BRACKET, LICENSE PLATE FASTENING STRUCTURE, AND LICENSE PLATE FASTENING METHOD
Europäisches Patentamt | 2024
|Multi-agent visual surveillance of dynamic scenes
British Library Online Contents | 1998
|License Plate Surveillance System Using Weighted Template Matching
British Library Conference Proceedings | 2004
|