Compressed sensing techniques have extensive applications in radar signal processing. Convex optimization approaches, such as $\ell _{2,1}$ minimization, are used for multichannel sparse signal recovery. However, when jointly sparse signals also exhibit the constant modulus (CM) property, $\ell _{2,1}$ minimization cannot utilize this prior information. In this article, we focus on utilizing $\ell _{\infty, 1}$ minimization to recover sparse signals with the CM property. We first establish a sufficient recovery condition for jointly sparse signals. Based on the duality theory, our main theorem sheds light on the superiority of $\ell _{\infty, 1}$ minimization over $\ell _{2, 1}$ minimization in the CM signal recovery. In addition, we provide an average-case analysis for $\ell _{\infty, 1}$ minimization. These results are applicable to the direction-of-arrival estimation with a nonuniform linear array and have practical relevance. A fast algorithm based on the alternating direction method of multipliers is proposed, and extensive numerical simulations are carried out to validate the results obtained.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Multichannel Sparse Recovery for Constant Modulus Signals via $\ell _{{\infty}, 1}$ Minimization


    Beteiligte:
    Mo, Yi-Lin (Autor:in) / Wang, Wenlong (Autor:in) / Shi, Junpeng (Autor:in) / Yang, Zai (Autor:in)


    Erscheinungsdatum :

    01.08.2025


    Format / Umfang :

    901947 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Sparse Signal Recovery via Residual Minimization Pursuit

    Song, Heping / Wang, Guoli | British Library Online Contents | 2014


    Multichannel Recovery of Quadrature Components of Bandpass Signals

    Figueiras-vidal, Anibal R. / Casar-corredera, Jose R. / Lagunas-hernandez, Miguel A. et al. | IEEE | 1982


    Recovery probability analysis for sparse signals via OMP

    Mingbo Niu / Salari, Soheil / Chan, Francois et al. | IEEE | 2015


    Reduced-Complexity Subarray-Level Sparse Recovery STAP for Multichannel Airborne Radar WGMTI Application

    Cui, Ning / Xing, Kun / Yu, Zhongjun et al. | IEEE | 2023

    Freier Zugriff