In this paper, we present a Swin Transformer based indoor localization framework that employs RF hologram tensors to locate multiple ultra-high frequency (UHF) passive Radiofrequency identification (RFID) tags. The RF hologram tensor captures the strong relationship between RFID measurements and spatial location, and helps to improve the robustness of the system in dynamic environments. We develop a Swin Transformer-based hologram filter network to clean the fake peaks in hologram tensors caused by multipath propagation and phase wrapping, exploring the spatial relationship between tags. In contrast to fingerprinting-based localization systems that use deep networks as classifier, the proposed network treats localization as a regression problem. An intuitive peak finding algorithm is introduced for location estimation using the sanitized hologram tensors. We prototype the proposed system using commodity RFID devices and conduct extensive experiments to evaluate its performance.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Locating Multiple RFID Tags with Swin Transformer-based RF Hologram Tensor Filtering


    Beteiligte:
    Wang, Xiangyu (Autor:in) / Zhang, Jian (Autor:in) / Mao, Shiwen (Autor:in) / Periaswamy, Senthilkumar Cg (Autor:in) / Patton, Justin (Autor:in)


    Erscheinungsdatum :

    01.09.2022


    Format / Umfang :

    365400 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    LOCATING LUGGAGE WITH RFID TAGS

    PUENTES ANTONIO F / HENDRIAN MATTHEW B / BARRACI NIMA et al. | Europäisches Patentamt | 2016

    Freier Zugriff


    RFID TIRE WIHT DETACHABLE RFID TAGS

    Europäisches Patentamt | 2025

    Freier Zugriff

    RFID TIRE WIHT DETACHABLE RFID TAGS

    BYEON GIL JAE | Europäisches Patentamt | 2024

    Freier Zugriff

    Object Detection in Maritime Scenarios Based on Swin-Transformer

    Sun, Wenli / Gao, Xu | Springer Verlag | 2022