We propose an algebraic geometric approach to the problem of estimating a mixture of linear subspaces from sample data points, the so-called generalized principal component analysis (GPCA) problem. In the absence of noise, we show that GPCA is equivalent to factoring a homogeneous polynomial whose degree is the number of subspaces and whose factors (roots) represent normal vectors to each subspace. We derive a formula for the number of subspaces n and provide an analytic solution to the factorization problem using linear algebraic techniques. The solution is closed form if and only if n /spl les/ 4. In the presence of noise, we cast GPCA as a constrained nonlinear least squares problem and derive an optimal function from which the subspaces can be directly recovered using standard nonlinear optimization techniques. We apply GPCA to the motion segmentation problem in computer vision, i.e. the problem of estimating a mixture of motion models from 2D imagery.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Generalized principal component analysis (GPCA)


    Beteiligte:
    Vidal, R. (Autor:in) / Yi Ma, (Autor:in) / Sastry, S. (Autor:in)


    Erscheinungsdatum :

    01.01.2003


    Format / Umfang :

    634865 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Generalized Principal Component Analysis (GPCA)

    Vidal, R. / Ma, Y. / Sastry, S. et al. | British Library Conference Proceedings | 2003


    GPCA adds audit scheme

    Online Contents | 2014