In the scenario of exo-atmospheric chasing game, a pursued vehicle needs to make an avoidance maneuver to evade the pursuit of a pursuing vehicle. Thus, it is very important to realize an intelligent recognition for the guidance behavior of the pursuing vehicle. Reinforced learning has the ability to achieve such an intelligent action. Among different approaches of reinforced learning, Temporal-Difference method uses a combinatory estimation from different temporal steps to determine the value function of an output policy, thus it statistically costs less training time than the Monte Carlo method. To use Temporal-Difference method to study the evader-pursuit problem, it is necessary to map a continuous state space into a limited number of discrete states. With the application of Temporal-Difference reinforced learning to the problem, an ordinal position based nonlinear normalization method is proposed to convert the continuous state vector and control vector into a discrete form, such that a new method called augmented Temporal-Difference reinforced learning method is created. Simulation results demonstrate the effectiveness of this augmented temporal difference method.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Ordinal Position Based Nonlinear Normalization Method in Temporal-Difference Reinforced Learning


    Beteiligte:
    Runle, Du (Autor:in) / Jiaqi, Liu (Autor:in) / Yonghai, Wang (Autor:in) / Zhiye, Jiang (Autor:in) / Di, Zhou (Autor:in)


    Erscheinungsdatum :

    16.07.2021


    Format / Umfang :

    7578564 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Intersection traffic control optimization method based on temporal difference learning

    FANG ZHONGLIANG / XU REN / LIU LIANG et al. | Europäisches Patentamt | 2021

    Freier Zugriff

    Covergence Behavior of Temporal Difference Learning

    Malhotra, R. P. / IEEE; Dayton Section / IEEE; Aerospace and Electronics Systems Society | British Library Conference Proceedings | 1996



    Ordinal space projection learning via neighbor classes representation

    Tian, Qing / Chen, Songcan / Ma, Tinghuai | British Library Online Contents | 2018


    Collision Probability Distribution Estimation via Temporal Difference Learning

    Steinecker, Thomas / Luettel, Thorsten / Maehlisch, Mirko | IEEE | 2024