Recently, the strapdown Attitude Reference System (ARS) became popular as an economic system for a small, light, low-cost system like an underwater vehicle. The ARS provides attitude information updated from the initial attitude. So, the initial attitude errors have a great effect on the ARS. In this paper, the leveling algorithm for compensating initial attitude errors using inertial sensors and a speed log is presented. The meaning of leveling in this paper is to acquire the two attitude angles of roll and pitch of the vehicle during its motion. The linear system model for the leveling is derived in order to apply extended Kalman filter (EKF) which is known to have many desirable properties. The simulation shows that the leveling algorithm using EKF is adequate by virtue of its property of decreasing attitude errors.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A leveling algorithm for an underwater vehicle using extended Kalman filter


    Beteiligte:
    Hyunsu Hong (Autor:in) / Jang Gyu Lee (Autor:in) / Chan Gook Park (Autor:in) / Hyung Seok Han (Autor:in)


    Erscheinungsdatum :

    01.01.1998


    Format / Umfang :

    377421 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Extended Kalman Filter for Vehicle Suspension System

    Rajeswari, K. ;Anjali, | Trans Tech Publications | 2014


    Observer Kalman filter identification of an autonomous underwater vehicle

    Tiano, A. / Sutton, R. / Lozowicki, A. et al. | Tema Archiv | 2007


    Observer Kalman Filter Identification of an Autonomous Underwater Vehicle

    Tiano, A. / Sutton, R. / Lozowicki, A. et al. | British Library Conference Proceedings | 2005


    Communication Based Longitudinal Vehicle Control Using an Extended Kalman Filter

    Hallouzi, R. / Verdult, V. / Hellendoorn, H. et al. | British Library Conference Proceedings | 2005


    High accuracy road vehicle state estimation using extended Kalman filter

    Wada, M. / Kang Sup Yoon, / Hashimoto, H. | IEEE | 2000