Constrained formation problems, for quadrotors and other systems, have been examined in various works in the past decade. Nevertheless, most works only consider constant or time-varying constraint functions, to be best of our knowledge. In this work, we examine path-dependent constraint requirements during formation tracking operations by a team of quadrotors, where the constraints are functions on path parameters. Universal barrier functions are used to deal with path-dependent constraint requirements, including constraints on distances with desired paths and inter-vehicle distances. Furthermore, unknown quadrotor’s mass, inertia, and disturbances are addressed using an adaptive robust formation algorithm. The newly proposed path-dependent constrained formation architecture can ensure formation tracking errors converge exponentially to small neighborhoods near the equilibrium, with all path-dependent constraint requirements met. At the end, a simulation study further illustrates the proposed scheme and demonstrates its efficacy.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Path-Dependent Constrained Formation for a Quadrotor Team


    Beteiligte:
    Hu, Zhongjun (Autor:in) / Jin, Xu (Autor:in)


    Erscheinungsdatum :

    01.01.2025


    Format / Umfang :

    14167761 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Quadrotor Flight in Constrained Indoor Environments

    Antonio Matus-Vargas | BASE | 2020

    Freier Zugriff

    Perception-Constrained Vision-Based Quadrotor Control

    Qin, Chao / Liu, Hugh H.-T. | Springer Verlag | 2024


    Path Planning of Quadrotor Using A* and LQR

    Thusoo, Ritika / Jain, Sheilza / Bangia, Sakshi | Springer Verlag | 2023


    Distributed Quadrotor UAV Tracking using a Team of Unmanned Ground Vehicles

    Omotuyi, Oyindamola / Pokhrel, Sameer / Sharma, Rajnikant | AIAA | 2021