Traffic flow prediction methods commonly rely on historical traffic data, such as traffic volume and speed, but may not be suitable for high-capacity expressways or during peak traffic hours. Furthermore, downstream flow can have significant impacts on traffic flow. To address these challenges, our study proposes a novel traffic flow prediction model, V-STF, which integrates visual methods to quantify macroscopic traffic flow indicators, as well as density features in temporal and flow feedback in spatio features. The contribution of our proposed model lies in its ability to improve prediction accuracy during non-periodic peak hours, by taking into account the impact of congested road conditions on traffic flow. Our experiments using the STREETS dataset demonstrate that V-STF outperforms state-of-the-art methods, especially in predicting sudden changes in traffic flow, resulting in more accurate predictions.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Flow Feedback Traffic Prediction Based on Visual Quantified Features


    Beteiligte:
    Chen, Jing (Autor:in) / Xu, Mengqi (Autor:in) / Xu, Wenqiang (Autor:in) / Li, Daping (Autor:in) / Peng, Weimin (Autor:in) / Xu, Haitao (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.09.2023


    Format / Umfang :

    2718659 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Fusing Visual Quantified Features for Heterogeneous Traffic Flow Prediction

    Qinyang WANG / Jing CHEN / Ying SONG et al. | DOAJ | 2024

    Freier Zugriff

    Regional traffic flow condition prediction method based on visual identification

    QIN FANGTAO | Europäisches Patentamt | 2022

    Freier Zugriff

    Short-term traffic flow prediction based on vehicle trip chain features

    Wang, Xiaoqing / Sun, Feng / Ma, Xiaolong et al. | Taylor & Francis Verlag | 2025


    Quantified Traveler: Travel Feedback Meets the Cloud to Change Behavior

    Jariyasunant, Jerald / Abou-Zeid, Maya / Carrel, Andre et al. | Taylor & Francis Verlag | 2015


    Quantified vehicles

    Kaiser, Christian | DataCite | 2021