Road accidents in Thailand remain a significant public health concern. This study analyzes accident patterns by combining grid-based spatial analysis (0.02° × 0.02° resolution) with vehicle type distribution data from 2019–2023. Using k-means clustering, we identified eight distinct clusters, with the most critical cluster (Cluster 7) showing accident rates 5.4 times higher than the national average, particularly around Suvarnabhumi Airport. Urban centers demonstrated accident frequencies 3.2 times higher than rural areas, with private vehicles and motorcycles being the predominant vehicle types involved. Our analysis identified strong correlations between accident-prone areas and specific vehicle types, highlighting critical locations for targeted interventions such as improved road design and stricter speed regulations. These findings offer a data-driven foundation for policymakers to enhance traffic monitoring, redesign hazardous intersections, and improve infrastructure in high-risk zones.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Grid-Based Spatial Analysis of Road Accident Patterns in Thailand




    Erscheinungsdatum :

    02.04.2025


    Format / Umfang :

    5694069 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Identifying similarities and dissimilarities among road accident patterns

    Nowakowska, M. | British Library Conference Proceedings | 2002


    Road Accident Analysis Factors

    Esmaeeli, H. / Abbaszadehfallah, I. / Chepuan, O.B. et al. | British Library Conference Proceedings | 2013


    Road Accident Analysis Factors

    Esmaeeli, Hamed / Abbaszadehfallah, Iman / Bin Chepuan, Othman et al. | Tema Archiv | 2012


    Road Accident Analysis in Yemen

    Naji, J. A. | British Library Conference Proceedings | 1998


    AIML for Road Accident Analysis

    Rathore, Saurabh Pratap Singh / C, Sanitha P / Varshney, Manoj et al. | IEEE | 2024