This research paper offers a novel approach to detect rear-end collisions and increase the acceleration of the victim car to possibly avoid or minimize the impact of the collision. A Deep Q-Learning model is utilized to predict the collision, the optimum acceleration of the victim car and the optimum braking of the committer car. The study uses a multi-agent reinforcement learning framework in a simulated environment, focusing on synchronized responses between lead and following vehicles. A comprehensive reward function encourages safe driving behaviors, optimized braking, and successful obstacle detection and avoidance. The continuous action space allows for subtle vehicle control, enhancing the system's adaptability to various collision scenarios. Experimental results demonstrate an overall improvement in collision avoidance and impact reduction over 5000 training episodes. This approach addresses a critical gap in existing safety systems by specifically targeting rear-end collisions, offering the potential for a significant reduction in accident rates and severity. Future work includes real-world testing and expansion to more complex traffic scenarios.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Rear-End Collision Avoidance Using Multi-Agent Deep Reinforcement Learning


    Beteiligte:


    Erscheinungsdatum :

    12.12.2024


    Format / Umfang :

    821398 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Pedestrian Collision Avoidance Using Deep Reinforcement Learning

    Rafiei, Alireza / Fasakhodi, Amirhossein Oliaei / Hajati, Farshid | Springer Verlag | 2022



    Multi Agent Protocol for Cooperative Rear-end Collision Avoidance System

    Basjaruddin, Noor Cholis / Noor, Zakka Izzatur Rahman / Widyantoro, Dwi Hendratmo | IEEE | 2019


    Vehicles Control: Collision Avoidance using Federated Deep Reinforcement Learning

    Elallid, Badr Ben / Abouaomar, Amine / Benamar, Nabil et al. | ArXiv | 2023

    Freier Zugriff

    REAR-END COLLISION AVOIDANCE

    KONET HEATHER / GOUDY ROY / PROBERT NEAL et al. | Europäisches Patentamt | 2017

    Freier Zugriff