Accurate localization of mobile terminals is crucial for integrated sensing and communication systems. Existing fingerprint localization methods, which deduce coordinates from channel information in pre-defined rectangular areas, struggle with the heterogeneous fingerprint distribution inherent in non-line-of-sight (NLOS) scenarios. To address the problem, we introduce a novel multi-source information fusion learning framework referred to as the Autosync Multi-Domain NLOS Localization (AMDNLoc). Specifically, AMDNLoc employs a two-stage matched filter fused with a target tracking algorithm and iterative centroid-based clustering to automatically and irregularly segment NLOS regions, ensuring uniform fingerprint distribution within channel state information across frequency, power, and time-delay domains. Additionally, the framework utilizes a segment-specific linear classifier array, coupled with deep residual network-based feature extraction and fusion, to establish the correlation function between fingerprint features and coordinates within these regions. Simulation results demonstrate that AMDNLoc significantly enhances localization accuracy by over 40% compared with traditional convolutional neural networks on the wireless artificial intelligence research dataset.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Multi -Sources Information Fusion Learning for Multi-Points NLOS Localization


    Beteiligte:
    Wang, Bohao (Autor:in) / Zhu, Fenghao (Autor:in) / Liu, Mengbing (Autor:in) / Huang, Chongwen (Autor:in) / Yang, Qianqian (Autor:in) / Alhammadi, Ahmed (Autor:in) / Zhang, Zhaoyang (Autor:in) / Debba, Merouane (Autor:in)


    Erscheinungsdatum :

    24.06.2024


    Format / Umfang :

    1449150 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    TDOA Localization Scheme with NLOS Mitigation

    Jiang, Wuyang / Ding, Baogang | IEEE | 2020


    Multi-Sensor Fusion Localization

    Zhang, Xinyu / Li, Jun / Li, Zhiwei et al. | Springer Verlag | 2023


    Hybrid Fingerprinting and Ray Extension Localization in NLOS Regions

    Li, Jun / Lu, I-Tai / Lu, Jonathan S. | IEEE | 2022



    BeamLoc - an approach for NLoS localization in UWB indoor environments

    Senger, C. / Kaiser, T. | IET Digital Library Archive | 2006