According to the nonlinear characteristic of ship motion, the ship motion pose will be disturbed by coupling, indefinite period, noise signals, chaotic and some other factors, which leads that it is hard to predict ship motion in the future precisely. Based on the above, and considering the sequence of ship movement, many neural networks have been applied in ship motion prediction, such as LSTM (Long Short-Term Memory, LSTM) and ESN (Echo State Network, ESN). However, there are problems in the parameter setting of ANN (Artificial Neural Network) algorithm, that how to update network parameters during training iterations of the network to avoid iterates getting into local optimum. LSTM with PSO optimization is proposed in this paper. Testing simulation results show that the combination LSTM and PSO improves the accuracy of ship motion prediction.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    LSTM-PSO: Long Short-Term Memory Ship Motion Prediction Based on Particle Swarm Optimization


    Beteiligte:
    Yao, Yuxin (Autor:in) / Han, Liang (Autor:in) / Wang, Jiangyun (Autor:in)


    Erscheinungsdatum :

    01.08.2018


    Format / Umfang :

    219528 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    STG-LSTM: Spatial-temporal graph-based long short-term memory for vehicle trajectory prediction

    Daniela Daniel Ndunguru / Fan Xing / Chrispus Zacharia Oroni et al. | DOAJ | 2025

    Freier Zugriff

    Parameters identification for ship motion model based on particle swarm optimization

    Chen, Yongbing / Song, Yexin / Chen, Mianyun | Tema Archiv | 2010


    Equipment evaluation method and system based on LSTM (Long Short Term Memory)

    YAN XUELIANG / HUAN HUAN / YIN BOHUA et al. | Europäisches Patentamt | 2022

    Freier Zugriff