In this paper, we present a non-parametric method which can be used to analyze facial video data of an automobile driver as he or she drives the vehicle. Each frame in the video sequence is classified using an eigenface representation. A database of face pose images is constructed, and experimental results are given which measure the performance of the method on a large test set. Variations in the performance as the number of faces used to train the classifier, as well as the number of eigen coefficients in the representation are varied, are also reported.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    An eigenface approach for estimating driver pose


    Beteiligte:
    Watta, P. (Autor:in) / Gandhi, N. (Autor:in) / Lakshmanan, S. (Autor:in)


    Erscheinungsdatum :

    01.01.2000


    Format / Umfang :

    409839 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    An Eigenface Approach for Estimating Driver Pose

    Watta, P. / Gandhi, N. / Lakshmanan, S. et al. | British Library Conference Proceedings | 2000


    Face recognition with multiple eigenface spaces [4550-21]

    Jiang, M. / Zhang, G. / Chen, Z. et al. | British Library Conference Proceedings | 2001


    Eigenface method through through facial expression recognition

    Shakyawar, Prashant / Choure, Pkumar / Singh, Upendra | IEEE | 2017


    Decomposed Eigenface for Face Recognition under Various Lighting Conditions

    Shakunaga, T. / Shigenari, K. / IEEE | British Library Conference Proceedings | 2001