The correct recognition rate (CRR) and implementation speed are two evaluation criteria for face recognition system. However, it is difficult to boost them when images are taken under different conditions. In this paper, the performance of a recognition method using wavelet packet decomposition(WPD) and two-directional two-dimensional principal component analysis ((2D)2PCA) is explored. First, plot images are obtained  via two-level WPD on original image. And then, the feature matrixes of these plot images are extracted using (2D)2PCA. Finally, the method is constructed by fusing the feature matrixes of ‘successful’ plot images properly chosen. Experiments on images with different illumination, expressions, and poses from PIE, Yale, and UMIST indicate that the proposed method can get a higher correct recognition rate than performing (2D)2PCA on original image.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Face Recognition Using (2D)^2PCA and Wavelet Packet Decomposition


    Beteiligte:
    He, Dongjian (Autor:in) / Zhang, Ligang (Autor:in) / Cui, Yuling (Autor:in)


    Erscheinungsdatum :

    01.05.2008


    Format / Umfang :

    1010205 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Wavelet packet analysis for face recognition

    Garcia, C. / Zikos, G. / Tziritas, G. | British Library Online Contents | 2000


    Rail defect diagnosis using wavelet packet decomposition

    Abbaszadeh, K. / Rahimian, M. / Toliyat, H.A. et al. | Tema Archiv | 2002


    Machine vibration prediction using ANFIS and wavelet packet decomposition

    Yang,Y. / Zhao,Q. / Univ.of Alberta,CA | Kraftfahrwesen | 2012