The autonomous driving of robots is coming and requires precise and reliable positioning information with low-cost sensors for the mass market. In this paper, we propose a tightly coupled sensor fusion of multiple complementary sensors including Global Navigation Satellite System (GNSS) receivers with Real-Time Kinematics (RTK), Inertial Measurement Units (IMUs), wheel odometry, Local Positioning System (LPS) and Visual Positioning. The focus of this paper is on the integration of LPS and vision since the coupling of GNSS-RTK, INS and wheel odometry is already state of the art. We include the positions of the LPS anchors and the bearing vectors and distances from the robot's camera towards the patch features as state vectors in our Kalman filter, and show the achievable positioning accuracies.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Precise Positioning of Robots with Fusion of GNSS, INS, Odometry, LPS and Vision


    Beteiligte:
    Henkel, Patrick (Autor:in) / Sperl, Andreas (Autor:in) / Mittmann, Ulrich (Autor:in) / Bensch, Robert (Autor:in) / Farber, Paul (Autor:in)


    Erscheinungsdatum :

    01.03.2019


    Format / Umfang :

    1647709 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    GNSS Precise Point Positioning Based on Multipath Signal Determination for Outdoor Mobile Robots

    Suzuki, T. / Kitamura, M. / Amano, Y. et al. | British Library Online Contents | 2012



    Precise Positioning for Automotive with Mass Market GNSS Chipsets

    de Groot, Lance / Infante, Eduardo / Jokinen, Altti et al. | British Library Conference Proceedings | 2018


    Real-time GNSS precise positioning: RTKLIB for ROS

    Ferreira, António / Matias, Bruno / Almeida, Jose Miguel et al. | BASE | 2020

    Freier Zugriff

    Performance Analysis of Multi-GNSS Precise Point Positioning

    Guo, Jiang / Li, Xiaotao / Chen, Xingyu et al. | British Library Conference Proceedings | 2017