This work focuses on a novel probabilistic approach for extended vehicle tracking, where multiple spatially distributed measurements can originate from the target, and kinematic state and geometry variables are estimated jointly. Prominent shape features extracted from raw measurement points contain spatial uncertainties due to noise in sensor measurements, the feature extraction process, approximation error of shape hypothesis, partial vision occlusion, to name a few. This work proposes a novel tracking paradigm that respects the variant spatial measurement model subject to changes in target pose and sensor viewpoint. This is achieved through probabilistic projection of the spatial measurement points to the predicted measurement sources on the visible side(s) of the target shape. The spatial uncertainties in the shape features are probabilistically modelled and incorporated in the unscented Kalman filter based estimation. The proposed approach is validated with field experiment results using cameras and a laser range scanner.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Extended Vehicle Tracking with Probabilistic Spatial Relation Projection and Consideration of Shape Feature Uncertainties


    Beteiligte:
    Shan, Mao (Autor:in) / De Alvis, Charika (Autor:in) / Worrall, Stewart (Autor:in) / Nebot, Eduardo (Autor:in)


    Erscheinungsdatum :

    01.06.2019


    Format / Umfang :

    3085898 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    EXTENDED VEHICLE TRACKING WITH PROBABILISTIC SPATIAL RELATION PROJECTION AND CONSIDERATION OF SHAPE FEATURE UNCERTAINTIES

    Shan, Mao / De Alvis, Charika / Worrall, Stewart et al. | British Library Conference Proceedings | 2019


    PROBABILISTIC RECTANGULAR-SHAPE ESTIMATION FOR EXTENDED OBJECT TRACKING

    Broßeit, Peter / Rapp, Matthias / Appenrodt, Nils et al. | British Library Conference Proceedings | 2016


    Probabilistic tracking in joint feature-spatial spaces

    Elgammal, A. / Duraiswami, R. / Davis, L.S. | IEEE | 2003


    Probabilistic Tracking in Joint Feature-Spatial Spaces

    Elgammal, A. / Duraiswami, R. / Davis, L. et al. | British Library Conference Proceedings | 2003


    Extended Robust Planetary Orbit Insertion Method Under Probabilistic Uncertainties

    Ozaki, Naoya / Chikazawa, Takuya / Kakihara, Kota et al. | AIAA | 2020