There is a growing demand for unmanned aerial vehicles (UAVs) in the industry as they are being widely used in various areas such as healthcare, security, military missions, agriculture, etc. However, the increase in the production and use of UAVs requires the improvement of solid decision-making principles, safety, security, and relevant technologies. In this regard, the present study investigated the performance of different machine learning models in detecting faults and attacks in UAV systems. To achieve this, we systematically compared eight supervised models applied to the early detection of attacks and faults in the physical components of UAVs. To reach this purpose, the relative performances of each model are evaluated in two controlled testing scenarios.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Supervised models for detecting GPS attacks and faults in UAVs: a comparative analysis


    Beteiligte:


    Erscheinungsdatum :

    11.11.2024


    Format / Umfang :

    306336 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Smart Self-Diagnosis Method for GPS Attacks and Safety Faults in UAVs

    Ferrao, Isadora Garcia / De Oliveira, Andre Luiz / Espes, David et al. | IEEE | 2024


    A Data Normalization Technique for Detecting Cyber Attacks on UAVs

    Elena Basan / Alexandr Basan / Alexey Nekrasov et al. | DOAJ | 2022

    Freier Zugriff

    A method of detecting UAVs

    RICHARD GILL | Europäisches Patentamt | 2023

    Freier Zugriff

    UAVs Path Deviation Attacks: Survey and Research Challenges

    Sorbelli, Francesco Betti / Conti, Mauro / Pinotti, Cristina M. et al. | ArXiv | 2021

    Freier Zugriff

    Detecting Faults By Use Of Hidden Markov Models

    Smyth, Padhraic J. | NTRS | 1995