Particle filtering provides a general framework for propagating probability density functions in nonlinear and non-Gaussian systems. However, the algorithm is based on a Monte Carlo approach and sampling is a problematic issue, especially for high dimensional problems. This paper presents a new kernel-based Bayesian filtering framework, which adopts an analytic approach to better approximate and propagate density functions. In this framework, the techniques of density interpolation and density approximation are introduced to represent the likelihood and the posterior densities by Gaussian mixtures, where all parameters such as the number of mixands, their weight, mean, and covariance are automatically determined. The proposed analytic approach is shown to perform sampling more efficiently in high dimensional space. We apply our algorithm to real-time tracking problems, and demonstrate its performance on real video sequences as well as synthetic examples.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Kernel-based Bayesian filtering for object tracking


    Beteiligte:
    Bohyung Han, (Autor:in) / Ying Zhu, (Autor:in) / Comaniciu, D. (Autor:in) / Davis, L. (Autor:in)


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    1037965 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Incremental density approximation and kernel-based Bayesian filtering for object tracking

    Bohyung Han, / Comaniciu, D. / Ying Zhu, et al. | IEEE | 2004


    Incremental Density Approximation and Kernel-Based Bayesian Filtering for Object Tracking

    Han, B. / Comaniciu, D. / Zhu, Y. et al. | British Library Conference Proceedings | 2004


    Kernel-Bayesian Framework for Object Tracking

    Zhang, Xiaoqin / Hu, Weiming / Luo, Guan et al. | Springer Verlag | 2007


    Approximate Bayesian methods for kernel-based object tracking

    Zivkovic, Z. / Cemgil, A. T. / Krose, B. | British Library Online Contents | 2009