In this paper, we propose SceNDD: a scenario-based naturalistic driving dataset that is built upon data collected from an instrumented vehicle in downtown Indi-anapolis. The data collection was completed in 68 driving sessions with different drivers, where each session lasted about 20–40 minutes. The main goal of creating this dataset is to provide the research community with real driving scenarios that have diverse trajectories and driving behaviors. The dataset contains ego-vehicle's waypoints, velocity, yaw angle, as well as non-ego actor's waypoints, velocity, yaw angle, entry-time, and exit-time. Certain flexibility is provided to users so that actors, sensors, lanes, roads, and obstacles can be added to the existing scenarios. We used a Joint Probabilistic Data Association (JPDA) tracker to detect non-ego vehicles on the road. We present some preliminary results of the proposed dataset and a few applications associated with it. The complete dataset is expected to be released by the end of 2022.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    SceNDD: A Scenario-based Naturalistic Driving Dataset


    Beteiligte:
    Prabu, Avinash (Autor:in) / Ranjan, Nitya (Autor:in) / Li, Lingxi (Autor:in) / Tian, Renran (Autor:in) / Chien, Stanley (Autor:in) / Chen, Yaobin (Autor:in) / Sherony, Rini (Autor:in)


    Erscheinungsdatum :

    08.10.2022


    Format / Umfang :

    2549645 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    TrafficNet: An open naturalistic driving scenario library

    Zhao, Ding / Guo, Yaohui / Jia, Yunhan Jack | IEEE | 2017


    Adversarial Safety-Critical Scenario Generation Using Naturalistic Human Driving Priors

    Hao, Kunkun / Cui, Wen / Luo, Yonggang et al. | IEEE | 2024



    Naturalistic Driving Study

    Raphael Grzebieta | DOAJ | 2015

    Freier Zugriff