In current face detection, mostly often used features are selected from a large set (e.g. Haar wavelets). Generally Haar wavelets only represent the local geometric feature. When applying those features to profile faces and eyes with irregular geometric patterns, the classifier accuracy is low in the later training stages, only near 50%. In this paper, instead of brute-force searching the large feature set, we propose to statistically learn the discriminant features for object detection. Besides applying Fisher discriminant analysis(FDA) in AdaBoost, we further propose the recursive nonparametric discriminant analysis (RNDA) to handle more general cases. Those discriminant analysis features are not constrained with geometric shape and can provide better accuracy. The compact size of feature set allows to select a near optimal subset of features and construct the probabilistic classifiers by greedy searching. The proposed methods are applied to multi-view face and eye detection and achieve good accuracy.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Learning discriminant features for multi-view face and eye detection


    Beteiligte:
    Peng Wang, (Autor:in) / Qiang Ji, (Autor:in)


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    466658 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Multi-view face and eye detection using discriminant features

    Wang, P. / Ji, Q. | British Library Online Contents | 2007


    Histogram Features-Based Fisher Linear Discriminant for Face Detection

    Wang, H. / Li, P. / Zhang, T. | British Library Conference Proceedings | 2006


    Learning probabilistic distribution model for multi-view face detection

    Lie Gu, / Li, S.Z. / Hong-Jiang Zhang, | IEEE | 2001


    Learning Probabilistic Distribution Model for Multi-View Face Detection

    Gu, L. / Li, S. Z. / Zhang, H.-J. et al. | British Library Conference Proceedings | 2001


    Multi-view face detection with FloatBoost

    ZhenQiu Zhang, / MingJing Li, / Li, S.Z. et al. | IEEE | 2002