A target tracking method based on data fusion of infrared and radar is proposed to improve tracking precision. Unscented Kalman filter (UKF) is applied to process data on distributed fusion architectures. The method combines the advantages of UKF and track-to-track algorithms. The cross-covariances of the two sensors are used to estimate overall covariance and states. The overall estimation is obtained by the track-to-track fusion algorithm for the optimal combination of two correlated estimates. The proposed method is applied to simulating target tracking of infrared and radar. The simulation results show the proposed method has advantages in higher precision, and probability of detection is increased.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Data fusion of infrared and radar for target tracking


    Beteiligte:
    Zhu, Anfu (Autor:in) / Jing, Zhanrong (Autor:in) / Chen, Weijun (Autor:in) / Wang, Liguang (Autor:in) / Li, Yunfei (Autor:in) / Cao, Zhenlin (Autor:in)


    Erscheinungsdatum :

    01.12.2008


    Format / Umfang :

    560163 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    15.10 Multi-Target Multi-Object Tracking, Sensor Fusion of Radar and Infrared

    Mobus, R. / Kolbe, U. / IEEE | British Library Conference Proceedings | 2004



    FUSION OF RADAR AND INFRARED DATA FOR OBJECT DETECTION AND TRACKING

    BURLINA PHILIPPE MARTIN / BLAES PATRICK / ZUO YIFAN et al. | Europäisches Patentamt | 2025

    Freier Zugriff

    FUSION OF RADAR AND INFRARED DATA FOR OBJECT DETECTION AND TRACKING

    BURLINA PHILIPPE / BLAES PATRICK / ZUO YIFAN et al. | Europäisches Patentamt | 2025

    Freier Zugriff