Aiming at providing a more rigorous data safeguard for the Internet of Things (IoTs), this paper initiates the study of privacy-preserving data aggregation. We propose a "randomize-then-shuffle" paradigm, which can be generalized into a two-step procedure, that is, a noise addition step plus a random permutation step. More specially, we design an efficient randomizer, which carefully guides the Data Contributors (DCs) to choose the privacy level and obfuscates the truth to ensure local differential privacy. Then, a shuffler is employed to receive the noisy data from all DCs. After that, it breaks the correct linkage between the senders and the receivers by applying a random permutation. Extensive simulations are provided to explore the privacy-utility landscape of our proposed paradigm.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Privacy-Preserving Data Aggregation in IoTs: A Randomize-then-Shuffle Paradigm


    Beteiligte:
    Wang, Zuyan (Autor:in) / Tao, Jun (Autor:in) / Zou, Dika (Autor:in)


    Erscheinungsdatum :

    01.06.2023


    Format / Umfang :

    957175 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Advanced Privacy-Preserving Data Aggregation for Accurate Traffic Flow Prediction

    Nicewarner, Tyler / Esser, Alex / Yu, Alian et al. | IEEE | 2024



    Vehicle-Shuffle

    British Library Online Contents | 1994



    PRIVACY-PRESERVING DISTRIBUTED VISUAL DATA PROCESSING

    YANG SHAO-WEN / CHEN YEN-KUANG / SANJAY ADDICAM V | Europäisches Patentamt | 2024

    Freier Zugriff