Connected vehicular services depend heavily on communication as they frequently transmit data and AI models/weights within the vehicular ecosystem. Energy efficiency in vehicles is crucial to keep up with the fast-growing demand for vehicular data processing and communication. To tackle this rising challenge, we explore approximation and edge AI techniques for achieving energy efficiency for vehicular services. Focusing on data-intensive vehicular services, we present an experimental case study on the high-definition (HD) map using the model partition approach. Our study compares the AI model energy consumption using multiple approximation ratios over embedded edge devices. Based on experimental insights, we further discuss an envisioned approximate Edge AI pipeline for developing and deploying energy-efficient vehicular services.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Energy-efficient Edge Approximation for Connected Vehicular Services


    Beteiligte:
    Katare, Dewant (Autor:in) / Ding, Aaron Yi (Autor:in)


    Erscheinungsdatum :

    22.03.2023


    Format / Umfang :

    3698235 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    EFFICIENT VEHICULAR SERVICES

    WATFA MAHMOUD / WANG CHONGGANG / LY QUANG et al. | Europäisches Patentamt | 2018

    Freier Zugriff

    Decentralized Vehicular Edge Computing Framework for Energy-Efficient Task Coordination

    Fardad, Mohammad / Muntean, Gabriel-Miro / Tal, Irina | IEEE | 2024


    VECFrame: A Vehicular Edge Computing Framework for Connected Autonomous Vehicles

    Tang, Sihai / Chen, Bruce / Iwen, Harold et al. | IEEE | 2021


    VeSense: Energy-Efficient Vehicular Sensing

    Ahnn, Jong Hoon / Potkonjak, Miodrag | IEEE | 2013


    Vehicular Edge Security

    Liu, Shaoshan | Wiley | 2020