We consider the problem of intelligently navigating through complex traffic. Urban situations are defined by the underlying map structure and special regulatory objects of e.g. a stop line or crosswalk. Thereon dynamic vehicles (cars, bicycles, etc.) move forward, while trying to keep accident risks low.Especially at intersections, the combination and interaction of traffic elements is diverse and human drivers need to focus on specific elements which are critical for their behavior. To support the analysis, we present in this paper the so-called Risk Navigation System (RNS). RNS leverages a graph-based local dynamic map with Time-To-X indicators for extracting upcoming sharp curves, intersection zones and possible vehicle-to-object collision points.In real car recordings, recommended velocity profiles to avoid risks are visualized within a 2D environment. By focusing on communicating not only the positional but also the temporal relation, RNS potentially helps to enhance awareness and prediction capabilities of the user.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Proactive Risk Navigation System for Real-World Urban Intersections


    Beteiligte:
    Puphal, Tim (Autor:in) / Flade, Benedict (Autor:in) / de Geus, Daan (Autor:in) / Eggert, Julian (Autor:in)


    Erscheinungsdatum :

    20.09.2020


    Format / Umfang :

    2670823 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Proactive delivery of navigation options

    VORONEL GARY / BARNETT DONALD / WANTLAND TIMOTHY et al. | Europäisches Patentamt | 2015

    Freier Zugriff


    AUTONOMOUS NAVIGATION OF ROAD INTERSECTIONS

    LIN SHU-KAI / ANG HIAP LEE / HERBST EVAN | Europäisches Patentamt | 2025

    Freier Zugriff

    Proactive Driving Modeling in Blind Intersections Based on Expert Driver Data

    Saiki, Morales / Yoshihara, Yuki / Akai, Naoki et al. | British Library Conference Proceedings | 2017