In this paper, we discuss collision avoidance for Connected and Autonomous Vehicles (CAVs) on a highway. CAVs are clustered into coalitions each managed by a leader. Within a coalition, collision avoidance is addressed using a Monte Carlo Tree Search (MCTS)-based approach. We propose algorithms for collision avoidance across coalitions. After an initial assessment of the impact of a potential collision on an affected coalition, leaders cooperate to define action plans that are free of intra-coalition and inter-coalition conflicts. The algorithms were validated through extensive realistic simulations in a multi-agent-based traffic simulator. Experimental results discuss the reliability and scalability of the algorithms for coalitions of different sizes. Moreover, we present an analysis to select the optimal coalition size and the optimal number of coalitions given a total number of CAVs.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Cooperative Collision Avoidance for Coalitions of Connected and Autonomous Vehicles


    Beteiligte:


    Erscheinungsdatum :

    08.10.2022


    Format / Umfang :

    1344883 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Novel Cooperative Collision Avoidance Model for Connected Vehicles

    Wang, Pangwei / Wu, WenXiang / Deng, Xiaohui et al. | Transportation Research Record | 2017


    Collision avoidance method for autonomous vehicles

    KIM KI HYUK | Europäisches Patentamt | 2021

    Freier Zugriff

    Autonomous Collision Avoidance of flying Vehicles

    Szu, Harold / Krapels, Keith | AIAA | 2007


    Cooperative Collision Avoidance in a Connected Vehicle Environment

    Gelbal, Sukru Yaren / Zhu, Sheng / Anantharaman, Gokul Arvind et al. | ArXiv | 2023

    Freier Zugriff

    Cooperative Collision Avoidance in a Connected Vehicle Environment

    Aksun Guvenc, Bilin / Anantharaman, Gokul Arvind / Guvenc, Levent et al. | SAE Technical Papers | 2019