This paper presents a test platform for Unmanned Aerial Vehicles, capable of detecting early damages in UAV components. The paper presents the architecture of the platform and the machine learning method used to detect damages. The method was proven with two types of emulated damages on propellers. The results showed a classification accuracy of about $90 \%$ in the identification of the damage.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    UAV test-bench platform for propeller diagnostics using Machine Learning


    Beteiligte:


    Erscheinungsdatum :

    11.11.2024


    Format / Umfang :

    2886429 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Propeller system semi-physical simulation test bench

    LI YUANYUAN / HAN XU / ZHAO YANSONG et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Water-air integrated propeller test platform

    ZHANG FENG / NING YANG / ZHAO YUCHENG et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    A test-bench for battery-motor-propeller assemblies designed for multirotor vehicles

    Avanzini, Giulio / Nisio, Attilio Di / Lanzolla, A.M.L et al. | IEEE | 2020


    Test-bench Development for the Efficiency Analysis of UAV Motor-Propeller Sets

    Hernandez, Juan D. / Nandar, Johanna E. / Changoluisa, Ivan D. et al. | IEEE | 2021


    A DUAL-PROPELLER DIAGNOSTICS SYSTEM

    BRAUER SAMUEL / TELL JOHAN / JOHANSSON LARS | Europäisches Patentamt | 2024

    Freier Zugriff