In the context of emerging 6G technology challenges, this paper introduces the LSMFF-AMC approach, leveraging multimodal feature fusion (MFF) with Long-Short range attention (LSRA) to enhance automatic modulation classification(AMC). The method significantly boosts classification accuracy by employing convolutional neural networks (CNN) for diverse modal feature extraction and integrating LSRA for comprehensive feature combination. Our experiments demonstrate an increase in accuracy from 88% to nearly 97%, outperforming traditional single-modal approaches. Additionally, a convergence analysis of the training loss function reveals LSMFF-AMC's superior and faster convergence compared to standard AMC methods.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Multi-Modal Fusion for Enhanced Automatic Modulation Classification


    Beteiligte:
    Li, Yingkai (Autor:in) / Wang, Shufei (Autor:in) / Zhang, Yibin (Autor:in) / Huang, Hao (Autor:in) / Wang, Yu (Autor:in) / Zhang, Qianyun (Autor:in) / Lin, Yun (Autor:in) / Gui, Guan (Autor:in)


    Erscheinungsdatum :

    24.06.2024


    Format / Umfang :

    1417360 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    News Video Classification Based on Multi-modal Information Fusion

    Lie, W.-N. / Su, C.-K. | British Library Conference Proceedings | 2005


    Contrastive Multi-Modal Fusion for Enhanced Airport Surface Surveillance

    Chao, Xu / Cai, Kaiquan / Zhao, Peng et al. | IEEE | 2025


    Automatic driving method and system based on multi-view multi-modal fusion

    LIU CHUNSHENG / SUN JINYING / CHANG FALIANG et al. | Europäisches Patentamt | 2024

    Freier Zugriff