Pedestrian tactical choices and operational movement in evacuations essentially pertain to decision-making under risk and uncertainty. However, in microscopic evacuation models, this attribute has been greatly overlooked, even lacking a methodology to delineate the related decision characteristics (bounded rationality and risk attitudes), let alone their effects on evacuation processes. This work presents an innovative two-layer floor field cellular automaton model framework, where three intertwined sub-modules respectively dedicated to modelling the exit choice, the locomotion movement and the exit-choice changing behaviours are proposed and integrated as an entity. By introducing various decision-making elements computed by the proposed algorithm, Cumulative Prospect Theory (CPT) is proposed for the first time to model the exit choice and locomotion decision-making under risk and uncertainty. In the exit-choice changing module, attractive and repulsive forces are invented to jointly describe the tendency to revisit the routing decision. Each sub-module and the whole framework are validated in manifold indoor environments. The simulation results of the modules with CPT accord with the empirics from the evacuation experiments and are superior over those from the state-of-the-art models. The degree of rationality and risk attitudes are proven to have significant impacts on tactical and operational decisions. Furthermore, irrational behaviour in decision-making is not variably detrimental to locomotion efficiency of pedestrians. The proposed framework can serve as an elegant tool to predict pedestrian dynamics. The behavioural findings shed new light on understanding and modelling the tactical and operational decisions in evacuations.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Modeling Pedestrian Tactical and Operational Decisions Under Risk and Uncertainty: A Two-Layer Model Framework


    Beteiligte:
    Huang, Rong (Autor:in) / Zhao, Xuan (Autor:in) / Yuan, Yufei (Autor:in) / Yu, Qiang (Autor:in) / Liu, Chengqing (Autor:in) / Daamen, Winnie (Autor:in)


    Erscheinungsdatum :

    2023-05-01


    Format / Umfang :

    6605246 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    MODELING THE FLIGHT TRAJECTORY OF OPERATIONAL-TACTICAL BALLISTIC MISSILES

    I. V. Filipchenko / I. L. Lapitsky / O. V. Voronin | DOAJ | 2018

    Freier Zugriff

    Pre-tactical optimization of runway utilization under uncertainty

    Kapolke, Manu / Fürstenau, Norbert / Heidt, Andreas et al. | Elsevier | 2016


    Communication interrupt effects on tactical decisions

    Callan, J.R. / Kelly, R.T. / Gwynne, J.W. III et al. | Tema Archiv | 1990


    Vehicle driving control method considering pedestrian uncertainty under game framework and medium

    SUN MENGGE / GUO LULU / HAN YITING et al. | Europäisches Patentamt | 2024

    Freier Zugriff