Many approaches to object recognition are founded on probability theory, and can be broadly characterized as either generative or discriminative according to whether or not the distribution of the image features is modelled. Generative and discriminative methods have very different characteristics, as well as complementary strengths and weaknesses. In this paper we introduce new generative and discriminative models for object detection and classification based on weakly labelled training data. We use these models to illustrate the relative merits of the two approaches in the context of a data set of widely varying images of non-rigid objects (animals). Our results support the assertion that neither approach alone will be sufficient for large scale object recognition, and we discuss techniques for combining them.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Generative versus discriminative methods for object recognition


    Beteiligte:
    Ulusoy, I. (Autor:in) / Bishop, C.M. (Autor:in)


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    496034 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Object recognition using discriminative parts

    Liu, Y. H. / Lee, A. J. / Chang, F. | British Library Online Contents | 2012


    A Hybrid Generative-Discriminative Learning Algorithm for Image Recognition

    Wang, Bin / Li, Chuanjiang / Li, Xiong et al. | Springer Verlag | 2017



    Hybrid Generative-Discriminative Visual Categorization

    Holub, A. D. / Welling, M. / Perona, P. | British Library Online Contents | 2008


    Monitoring of facial stress during space flight: Optical computer recognition combining discriminative and generative methods

    Dinges, D. F. / Venkataraman, S. / McGlinchey, E. L. et al. | British Library Conference Proceedings | 2007