A new symbiotic genetic algorithm (SGA)-based active contour model (Snake) is proposed to track the B-spline contour of obstacles. It exploits the local control properties of the B-spline to decompose the contour into subcontours and optimizes each subcontour in separate genetic algorithms (GA). Unlike GA-based Snake, a SGASnake can track the obstacles outline more robustly. Application-specific inter-population genetic operators are introduced to reinforce the symbiotic relationship via migration of genetic material. The use of symbiosis dramatically reduces the combinatorics of the search space, when compared to GA. Results of tracking objects in real road scenarios demonstrate its robustness to noise and stability of convergence when compared to its GA counterpart.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Co-evolutionary-based active contour models in tracking of moving obstacles


    Beteiligte:
    Ooi, C. (Autor:in) / Liatsis, P. (Autor:in)


    Erscheinungsdatum :

    01.01.2001


    Format / Umfang :

    516217 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Co-evolutionary based active contour models in tracking of moving obstacles

    Ooi, C. / Liatsis, P. / Institution of Electrical Engineers | British Library Conference Proceedings | 2001


    A Moving Object Tracking Method Based on Active Contour Models

    Fang, T. / Yang, Z. / Shen, C.-l. | British Library Online Contents | 2008



    Automatic Tracking and 3D Localization of Moving Objects by Active Contour Models

    Selsis, M. / Vieren, C. / Cabestaing, F. et al. | British Library Conference Proceedings | 1995


    Unmanned vehicle and method for tracking moving obstacles

    AHN SEUNG UK / SEO YOUNG WOO | Europäisches Patentamt | 2024

    Freier Zugriff