Moving object detection (MOD) is a basic and important problem in video analysis and vision applications. In this paper, a novel MOD method is proposed using global motion estimation and edge information. In order to get more robust MOD results under different backgrounds and lighting conditions, a bilinear model and histogram scaling method are used respectively for spatial and illumination normalization. After normalization, edges are extracted by Canny and further filtered using morphological operators to get closed object contours. The final objects are extracted by combining the contours and moving regions from motion detection. The experimental results show the proposed approach has apparent advantages in robust and accurate detection and tracking of moving objects with changing of camera positions, lighting conditions and background for real-time applications.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Real-time moving object detection under complex background


    Beteiligte:
    Jinchang Ren, (Autor:in) / Astheimer, P. (Autor:in) / Feng, D.D. (Autor:in)


    Erscheinungsdatum :

    01.01.2003


    Format / Umfang :

    347018 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Real-Time Moving Object Detection Under Complex Background

    Ren, J. / Astheimer, P. / Feng, D. D. et al. | British Library Conference Proceedings | 2003



    MOVING OBJECT DETECTION UNDER DYNAMIC BACKGROUND IN 3D RANGE DATA

    Yang, Y. / Yan, G. / Zhu, H. et al. | British Library Conference Proceedings | 2014


    FPGA Based Real-time Vehicle Detection System under Complex Background

    Gu, Jiaojiao / Xiao, Han / He, Wenhao et al. | British Library Conference Proceedings | 2016