A road curb detection algorithm for a 3D sensor, e.g. a dense stereo camera, is presented in this paper. The road curb detection is based on a digital elevation map. Different techniques and coordinate systems for mapping the height values are compared theoretically and by simulating a different quality of ego motion data. Furthermore we introduce a new approach of finding road curbs in an elevation map, which is based on a calculation of the most probable path. Using an elevation map the curb height can be calculated in an additional step. For evaluation we use highly accurate reference sensors and compare the detected curbs to a ground truth. Additionally we introduce a novel criteria to describe the quality of an elevation map and discuss the results. The road detection algorithm works in real-time and has a position accuracy of about 10 cm and an height error of about 1.5 cm.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Road curb detection based on different elevation mapping techniques


    Beteiligte:


    Erscheinungsdatum :

    01.06.2014


    Format / Umfang :

    1326817 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    ROAD CURB DETECTION BASED ON DIFFERENT ELEVATION MAPPING TECHNIQUES

    Kellner, M. / Bouzouraa, M. / Hofmann, U. et al. | British Library Conference Proceedings | 2014


    Curb road road safety indicator

    LEE SEUNG HOON | Europäisches Patentamt | 2017

    Freier Zugriff

    METHOD OF DETECTING ROAD-CURB USING LIDAR SENSOR AND A ROAD-CURB DETECTION DEVICE PERFORMING METHOD

    CHUN CHANGHWAN / LEE SEUNGYONG | Europäisches Patentamt | 2022

    Freier Zugriff

    Road Curb Detection: ADAS for a Road Sweeper Vehicle

    Bilić, Ivan / Popović, Goran / Savić, Tibor Bataljak et al. | Springer Verlag | 2023


    Multi-cue, Model-Based Detection and Mapping of Road Curb Features Using Stereo Vision

    Kellner, Martin / Hofmann, Ulrich / Bouzouraa, Mohamed Essayed et al. | IEEE | 2015