Accurate and timely traffic flow prediction is crucial for intelligent transportation systems (ITS). Recent advances in graph-based neural networks have achieved promising prediction results. However, some challenges remain, especially regarding graph construction and the time complexity of models. In this paper, we propose a multi-stream feature fusion approach to extract and integrate rich features from traffic data and leverage a data-driven adjacent matrix instead of the distance-based matrix to construct graphs. We calculate the Spearman rank correlation coefficient between monitor stations to obtain the initial adjacent matrix and fine-tune it while training. As to the model, we construct a multi-stream feature fusion block (MFFB) module, which includes a three-channel network and the soft-attention mechanism. The three-channel networks are graph convolutional neural network (GCN), gated recurrent unit (GRU) and fully connected neural network (FNN), which are used to extract spatial, temporal and other features, respectively. The soft-attention mechanism is utilized to integrate the obtained features. The MFFB modules are stacked, and a fully connected layer and a convolutional layer are used to make predictions. We conduct experiments on two real-world traffic prediction tasks and verify that our proposed approach outperforms the state-of-the-art methods within an acceptable time complexity.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Multi-Stream Feature Fusion Approach for Traffic Prediction


    Beteiligte:
    Li, Zhishuai (Autor:in) / Xiong, Gang (Autor:in) / Tian, Yonglin (Autor:in) / Lv, Yisheng (Autor:in) / Chen, Yuanyuan (Autor:in) / Hui, Pan (Autor:in) / Su, Xiang (Autor:in)


    Erscheinungsdatum :

    01.02.2022


    Format / Umfang :

    3320094 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    A Traffic Prediction Model Based on Multi Stream Feature Fusion

    Musike, Mahipal Reddy / Tiwari, Rajesh / Shrivastava, Rajeev | Springer Verlag | 2024


    Traffic flow prediction method based on multi-feature fusion

    LIU CONG'AI / QIN YUHUA / ZHANG XIAOJING | Europäisches Patentamt | 2024

    Freier Zugriff

    Traffic flow prediction method based on multi-feature extraction and fusion

    TANG YUNXIAO / LI DINGCHENG / LIN ZE | Europäisches Patentamt | 2024

    Freier Zugriff


    Multi-modal traffic flow prediction method based on multi-source data feature fusion

    CHEN LULU / LI SHIJIE / JIANG HUAIGUANG et al. | Europäisches Patentamt | 2025

    Freier Zugriff