Data classification is a hot topic in machine learning research. Most classification algorithms need complete data sets, but missing data widely exists in our life. It is necessary to classify the data sets with missing data. Generally speaking, the existence of missing data will affect the classification effect, so the processing method of missing data largely determines the quality of the classification algorithm. In this paper, K-nearest Neighbor (KNN) algorithm is improved with the help of Patial Distance Strategy(PDS)to be applied to incomplete data sets. The processed data set is visualized. The classification effect is compared with the mean imputation and 0-value imputation, and the different features of the data set are weighted in various ways. The results show that our method has high accuracy on incomplete data sets.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Partial Weighted K-nearest Neighbor Classification of Incomplete Data


    Beteiligte:
    Gao, Shengtao (Autor:in) / Yuan, Xinying (Autor:in) / Tang, Jinlin (Autor:in)


    Erscheinungsdatum :

    12.10.2022


    Format / Umfang :

    1530272 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Enhanced Weighted K-Nearest Neighbor Positioning

    Li, Xinze / Al-Tous, Hanan / Hajri, Salah Eddine et al. | IEEE | 2024


    Nearest neighbor weighted average customization for modeling faces

    Abeysundera, H. P. | British Library Online Contents | 2013


    LDA/SVM driven nearest neighbor classification

    Jing Peng, / Heisterkamp, D.R. / Dai, H.K. | IEEE | 2001


    LDA/SVM Driven Nearest Neighbor Classification

    Pengl, I. / Heisterkamp, D. R. / Dai, H. K. et al. | British Library Conference Proceedings | 2001


    Hyperspectral Signature Classification with Tabular Nearest-Neighbor Encoding

    Schmalz, M. | British Library Conference Proceedings | 2007