Based on stationary wavelet packet transform and Hilbert transform, the paper proposes a fault detection algorithm, which adaptively extracts the fault characteristic component of the signal. Firstly, the algorithm uses one-level stationary wavelet packet transform to decompose the signal into low- and high-frequency sub-bands. Subsequently, Hilbert transform is used to obtain the instantaneous frequency and instantaneous amplitude of the low- or high-frequency sub-band. Based on the preset frequency and amplitude criteria, the algorithm decides whether to further decompose the sub-band or hold it. Thus the algorithm adaptively selects the path of stationary wavelet packet decomposition, making a multi-resolution spectral analysis on the signal and extracting the characteristic components for fault detection. The simulations show that the algorithm provides sufficient frequency-amplitude fault information with the less computational workloads and has better anti-noise performance.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Power System Fault Detection Based on Stationary Wavelet Packet Transform and Hilbert Transform


    Beteiligte:
    Liu, Yi-Hua (Autor:in) / Zhao, Guang-Zhou (Autor:in)


    Erscheinungsdatum :

    01.05.2008


    Format / Umfang :

    374299 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Wavelet Packet Transform-Based OFDM for Optical Communications

    Li, A. / Shieh, W. / Tucker, R.S. | British Library Online Contents | 2010


    Comparative study of Hilbert-Huang transform, Fourier transform and wavelet transform in pavement profile analysis

    Ayenu-Prah,A.Y. / Attoh-Okine,N.O. / Univ.of Delaware,US | Kraftfahrwesen | 2009