In this paper we propose a new theoretical — yet applicable — framework to model the vehicular traffic. We model a vehicle as an automaton that has its own propulsion and can see the state of other automata in a constant size neighborhood. The rules guiding the change of states of each vehicle comprises of the common traffic rules. By observing the dynamics of such automata, we can devise optimal rules that may relieve the traffic congestion, and increase road safety. Last but not least, this model is an algorithmic framework to devise novel algorithms that use vehicular networks and communication between cars and the infrastructure.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    An autonomous driving framework with self-configurable vehicle clusters


    Beteiligte:
    Ozkul, Mukremin (Autor:in) / Capuni, Ilir (Autor:in)


    Erscheinungsdatum :

    01.11.2014


    Format / Umfang :

    10388294 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Self-Configurable Stabilized Real-Time Detection Learning for Autonomous Driving Applications

    Yun, Won Joon / Park, Soohyun / Kim, Joongheon et al. | IEEE | 2023


    CONFIGURABLE ILLUMINATION ON REGION OF INTEREST FOR AUTONOMOUS DRIVING

    ZHENG BOWEN / YU XIANG / XIAO SINAN et al. | Europäisches Patentamt | 2020

    Freier Zugriff

    Autonomous vehicle having a configurable passenger seat

    ELLIS JOHAD HUSSEINI | Europäisches Patentamt | 2022

    Freier Zugriff

    Autonomous Vehicle Having a Configurable Passenger Seat

    ELLIS JOHAD HUSSEINI | Europäisches Patentamt | 2021

    Freier Zugriff

    Autonomous Self-Driving Vehicle with Advertising Platform

    TERZIAN ALEXANDER | Europäisches Patentamt | 2022

    Freier Zugriff