The popularity of Uncrewed Aerial Vehicles (UAVs) is on the rise, but these complex systems are susceptible to faults and anomalies impacting their safety and performance. To deal with emergency situations, it is necessary to monitor the status of these aircraft and report any anomalies or faults. Therefore, it is of great significance to study the anomaly detection method for UAV systems. In this study, unsupervised neural network models called Autoencoders (AE) and Variational Autoencoders (VAE) are utilized to detect UAV faults and anomalies. The key idea is to train autoencoders to learn the normal data and, after training, use them to identify the abnormal data by observing the magnitude of the reconstruction error. This serves as both an indicator of anomalies during inference and a cost function in training. Our results from publicly available real UAV sensor data called ALFA (Air Lab Failure and Anomaly) verify that the VAE-based method can effectively detect faults and anomalies with an average accuracy of 95.6%.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    UAV Fault and Anomaly Detection Using Autoencoders


    Beteiligte:
    Dhakal, Raju (Autor:in) / Bosma, Carly (Autor:in) / Chaudhary, Prachi (Autor:in) / Kandel, Laxima Niure (Autor:in)


    Erscheinungsdatum :

    01.10.2023


    Format / Umfang :

    6961505 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Anomaly Detection in Autonomous Vehicle’s Lidar Sensor Data Using Variational Autoencoders

    Sboui, Nourhane / Hadded, Mohamed / Ghazzai, Hakim et al. | IEEE | 2024



    A Comparative Analysis on the use of Autoencoders for Robot Security Anomaly Detection

    Olivato, Matteo / Cotugno, Omar / Brigato, Lorenzo et al. | BASE | 2019

    Freier Zugriff


    Aircraft engine fault detection based on grouped convolutional denoising autoencoders

    FU, Xuyun / LUO, Hui / ZHONG, Shisheng et al. | British Library Online Contents | 2019